Index lomu

Index lomu (značí se n nebo N) je bezrozměrná fyzikální veličina popisující šíření světla a všeobecně elektromagnetického záření v látkách. Jeho základní využití spočívá v modelování lomu světla na rozhraní látek, kterými se světlo šíří různou rychlostí (Snellův zákon), a také k výpočtům míry odrazu a průchodu světla ve Fresnelových rovnicích.

Fázová rychlost má hodnotu:

{\displaystyle v(\omega )={\frac {c}{n(\omega )}}} v(\omega )={\frac {c}{n(\omega )}}
a grupová rychlost je rovna:

{\displaystyle v_{g}(\omega )={\frac {c}{n(\omega )+\omega {\frac {dn}{d\omega }}}}} v_{g}(\omega )={\frac {c}{n(\omega )+\omega {\frac {dn}{d\omega }}}}
(jmenovatel se také označuje pojmem grupový index lomu).

Grupová rychlost nemůže přesáhnout hodnotu c ve shodě s teorií relativity; v opticky čerpaném prostředí (čerpání typu používaného v laserech) však může být záporná. Děje se tak vždy výhradně v oblasti, kde je současně velmi silná absorpce, což vyžadují Kramersovy-Kronigovy relace. V květnu roku 2006 oznámil tým Univerzity v Rochesteru (USA) vedený Robertem Boydem důkaz záporné grupové rychlosti v časopise Science – experiment prokázal, že se v takovém prostředí světelný puls šíří opravdu pozpátku[1],[2].

Naproti tomu fázová rychlost, která není spojena s přenosem informace, může nabývat téměř libovolných hodnot, vyšších než c nebo dokonce záporných (viz níže).

Imaginární část
Index absorpce, κ(ω) udává míru útlumu procházejícího záření v dané látce pohlcením (absorpcí). Lze z něj určit např. absorpční délku da(ω) pomocí vztahu

{\displaystyle d_{a}={\frac {c}{2\omega \kappa }}} {\displaystyle d_{a}={\frac {c}{2\omega \kappa }}}.
Urazí-li v dané látce záření o úhlové frekvenci ω vzdálenost da, poklesne jeho intenzita na hodnotu 1/e, tj. asi na 36,8 %.

Značení
Obecně se index lomu značí n, ale protože doopravdy závisí index lomu na vlnové délce právě toho světla, jež se láme, tak se u materiálů většinou index lomu značí n s dolním indexem, ve kterém je písmenné označení vlnové délky - barvy světla, pro které daný index lomu platí.

Většinou se u materiálů v rychlosti uvádí index lomu nD, což je index lomu pro světlo z Fraunhoferovy čáry D, která odpovídá 589,26 nm vlnové délky světla (D-linie spektra Na).
Další možností měření, která se ještě poměrně často využívá je index lomu pro světlo odpovídající vlnové délce 670,784 3 nm, které se značí nLi a jedná se o α-linii spektra Li.
Lom světla v materiálu může nastávat ve směrech krystalografických os a takto změřené veličiny se pak značí např.: nDa nDb nebo nLic nebo pokud světlo dopadá na stěnu dvojlomného materiálu, tak dochází k jeho rozdělení na dva paprsky. Jeden z nich se nazývá řádný (ordinární) a označuje se nDř nebo nLiř, druhý paprsek se nazývá mimořádný (extraordinární) a označuje se nDm nebo nLim, podle toho jakým světlem se látka proměřuje.

Záporný index lomu
Šíření elektromagnetických vln v látce popisují Maxwellovy rovnice spolu se vztahy D = ε E, B = μ H kde ε je komplexní permitivita a μ magnetická permeabilita. Záporný lom byl studován šedesátých letech 20. století si sovětský fyzik V. G. Veselago povšiml, že kromě obvyklých řešení, kdy reálné části ε, μ a n jsou kladné, formálně existují i řešení se zápornými hodnotami těchto veličin. Předpověděl tak, že takovýto materiál by měl některé neobvyklé vlastnosti: lom světla by podle Snellova zákona obracel směr šíření paprsků vůči kolmici dopadu a fázová rychlost by byla záporná.

Vytvořit takovou látku ve formě tzv. metamateriálu se podařilo až po roce 2000, vždy však jen pro jednu frekvenci vlnění, navíc jen v oblasti mikrovlnného záření. Na sestavení podobných metamateriálů pro viditelné světlo pracují v současnosti některé výzkumné týmy; jeho použití by znamenalo významný pokrok v optice, neboť by umožnilo optické zobrazování objektů podstatně menších než vlnová délka použitého světla bez nutnosti používat skenující vlnovodnou sondu (tzv. SNOM). Nejde však jen o technologický vývoj - stále je potřeba vyřešit koncepční překážky, jako je prostorová disperze (tj. zejm. závislost efektivního indexu lomu na směru šíření) a především silná absorpce světla, která je předpovídána pro všechny struktury dosud navržené z realistických materiálů v optické nebo infračervené oblasti.

Fázová rychlost má hodnotu:

{\displaystyle v(\omega )={\frac {c}{n(\omega )}}} v(\omega )={\frac {c}{n(\omega )}}
a grupová rychlost je rovna:

{\displaystyle v_{g}(\omega )={\frac {c}{n(\omega )+\omega {\frac {dn}{d\omega }}}}} v_{g}(\omega )={\frac {c}{n(\omega )+\omega {\frac {dn}{d\omega }}}}
(jmenovatel se také označuje pojmem grupový index lomu).

Grupová rychlost nemůže přesáhnout hodnotu c ve shodě s teorií relativity; v opticky čerpaném prostředí (čerpání typu používaného v laserech) však může být záporná. Děje se tak vždy výhradně v oblasti, kde je současně velmi silná absorpce, což vyžadují Kramersovy-Kronigovy relace. V květnu roku 2006 oznámil tým Univerzity v Rochesteru (USA) vedený Robertem Boydem důkaz záporné grupové rychlosti v časopise Science – experiment prokázal, že se v takovém prostředí světelný puls šíří opravdu pozpátku[1],[2].

Naproti tomu fázová rychlost, která není spojena s přenosem informace, může nabývat téměř libovolných hodnot, vyšších než c nebo dokonce záporných (viz níže).

Imaginární část
Index absorpce, κ(ω) udává míru útlumu procházejícího záření v dané látce pohlcením (absorpcí). Lze z něj určit např. absorpční délku da(ω) pomocí vztahu

{\displaystyle d_{a}={\frac {c}{2\omega \kappa }}} {\displaystyle d_{a}={\frac {c}{2\omega \kappa }}}.
Urazí-li v dané látce záření o úhlové frekvenci ω vzdálenost da, poklesne jeho intenzita na hodnotu 1/e, tj. asi na 36,8 %.

Značení
Obecně se index lomu značí n, ale protože doopravdy závisí index lomu na vlnové délce právě toho světla, jež se láme, tak se u materiálů většinou index lomu značí n s dolním indexem, ve kterém je písmenné označení vlnové délky - barvy světla, pro které daný index lomu platí.

Většinou se u materiálů v rychlosti uvádí index lomu nD, což je index lomu pro světlo z Fraunhoferovy čáry D, která odpovídá 589,26 nm vlnové délky světla (D-linie spektra Na).
Další možností měření, která se ještě poměrně často využívá je index lomu pro světlo odpovídající vlnové délce 670,784 3 nm, které se značí nLi a jedná se o α-linii spektra Li.
Lom světla v materiálu může nastávat ve směrech krystalografických os a takto změřené veličiny se pak značí např.: nDa nDb nebo nLic nebo pokud světlo dopadá na stěnu dvojlomného materiálu, tak dochází k jeho rozdělení na dva paprsky. Jeden z nich se nazývá řádný (ordinární) a označuje se nDř nebo nLiř, druhý paprsek se nazývá mimořádný (extraordinární) a označuje se nDm nebo nLim, podle toho jakým světlem se látka proměřuje.

Záporný index lomu
Šíření elektromagnetických vln v látce popisují Maxwellovy rovnice spolu se vztahy D = ε E, B = μ H kde ε je komplexní permitivita a μ magnetická permeabilita. Záporný lom byl studován šedesátých letech 20. století si sovětský fyzik V. G. Veselago povšiml, že kromě obvyklých řešení, kdy reálné části ε, μ a n jsou kladné, formálně existují i řešení se zápornými hodnotami těchto veličin. Předpověděl tak, že takovýto materiál by měl některé neobvyklé vlastnosti: lom světla by podle Snellova zákona obracel směr šíření paprsků vůči kolmici dopadu a fázová rychlost by byla záporná.

Vytvořit takovou látku ve formě tzv. metamateriálu se podařilo až po roce 2000, vždy však jen pro jednu frekvenci vlnění, navíc jen v oblasti mikrovlnného záření. Na sestavení podobných metamateriálů pro viditelné světlo pracují v současnosti některé výzkumné týmy; jeho použití by znamenalo významný pokrok v optice, neboť by umožnilo optické zobrazování objektů podstatně menších než vlnová délka použitého světla bez nutnosti používat skenující vlnovodnou sondu (tzv. SNOM). Nejde však jen o technologický vývoj - stále je potřeba vyřešit koncepční překážky, jako je prostorová disperze (tj. zejm. závislost efektivního indexu lomu na směru šíření) a především silná absorpce světla, která je předpovídána pro všechny struktury dosud navržené z realistických materiálů v optické nebo infračervené oblasti.

Index lomu jako konstanta
V nejjednodušším případě – pro průhledné a čiré látky – lze index lomu n považovat za konstantu, vztahující se k celému rozsahu viditelného světla. V tom případě je index lomu vždy větší než 1 a rychlost šíření světla v dané látce v je určena vztahem

{\displaystyle v={\frac {c}{n}}} {\displaystyle v={\frac {c}{n}}},
kde c je rychlost světla ve vakuu. Takto definovaný index lomu se označuje jako absolutní index lomu.

Pro přechod z prostředí s indexem lomu {\displaystyle n_{1}} n_{1} do prostředí s indexem lomu {\displaystyle n_{2}} n_{2} se často používá relativní index lomu {\displaystyle n_{21}} {\displaystyle n_{21}}, který je definován jako

{\displaystyle n_{21}={\frac {n_{2}}{n_{1}}}} {\displaystyle n_{21}={\frac {n_{2}}{n_{1}}}}
Pro přechod vlnění opačným směrem je index lomu {\displaystyle n_{12}={\frac {1}{n_{21}}}} {\displaystyle n_{12}={\frac {1}{n_{21}}}} Pomocí relativního indexu lomu lze psát

{\displaystyle n_{21}={\frac {v_{1}}{v_{2}}}} {\displaystyle n_{21}={\frac {v_{1}}{v_{2}}}},
kde {\displaystyle v_{1}} {\displaystyle v_{1}} je rychlost šíření vln v prvním prostředí (s indexem lomu {\displaystyle n_{1}} n_{1}) a {\displaystyle v_{2}} {\displaystyle v_{2}} je rychlost šíření ve druhém prostředí (s indexem lomu {\displaystyle n_{2}} n_{2}).

Na rovinném rozhraní dvou látek s různými indexy lomu dochází k lomu světla dle Snellova zákona:

{\displaystyle {\frac {\sin \alpha }{\sin \beta }}={\frac {v_{1}}{v_{2}}}={\frac {n_{2}}{n_{1}}}} {\displaystyle {\frac {\sin \alpha }{\sin \beta }}={\frac {v_{1}}{v_{2}}}={\frac {n_{2}}{n_{1}}}}
kde α je úhel svíraný daným proudem světla a kolmicí na rovinu dopadu na materiál a β je úhel svíraný proudem světla a kolmicí na rovinu dopadu ze strany materiálu, do kterého se dané světlo láme.

Absolutní index lomu některých látek je uveden v následující tabulce.

Látka index lomu
vakuum 1
vzduch (normální tlak) 1,00026
led 1,31
voda 1,33
etanol 1,36
glycerol 1,473
sklo 1,5 až 1,9
sůl 1,52
safír 1,77
diamant 2,42
[zdroj?]

Máme-li dvě prostředí, pak prostředí s větším absolutním indexem lomu se nazývá opticky hustší, a prostředí s menším absolutním indexem lomu se nazývá opticky řidší prostředí. Při přechodu z opticky hustšího prostředí do prostředí opticky řidšího je relativní index lomu menší než jedna. Naopak při přechodu z prostředí opticky řidšího prostředí do prostředí opticky hustšího je relativní index lomu větší než jedna.

Frekvenčně závislý index lomu
Tak jako všechny optické konstanty je i index lomu obecně komplexní funkcí frekvence (resp. vlnové délky), N(ω)=n(ω) + i κ(ω), má tedy reálnou a imaginární část.

Reálná část
Reálná část je zobecněním indexu lomu popsaného v předešlém odstavci. Látky se často vyznačují přítomností několika oblastí průhlednosti v elektromagnetickém spektru; v každé z nich je n téměř konstantní, přičemž tyto konstantní hodnoty rostou směrem k větším frekvencím.

Frekvenčně závislý index lomu také popisuje rychlost šíření světla v látce, avšak navíc je třeba rozlišovat mezi fázovou a grupovou rychlostí: zatímco fázová rychlost popisuje rychlost šíření ploch se stejnou fází vlnění, grupová rychlost se vztahuje k obálce amplitudy, neboli k rychlosti šíření signálu (informace).

Autor: Obchod Obchod Datum:24.06.2019 10:44

Nákupní košík
položek v košíku: 0
peněz v košíku: 0 Kč

Created by © 2025. ALS Euro s.r.o. tvorba www stránek & webdesign